Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia

> Mariana Marchionni marchionni.mariana@gmail.com

Econometría I - FCE - UNLP www.econometria1unlp.com

Temario de la clase

- Repaso
- 2 El modelo lineal clásico
- 3 Propiedades estadísticas de los estimadores
- 4 Inferencia

Estimación por MCO del modelo lineal simple

Tenemos el modelo lineal con 2 variables

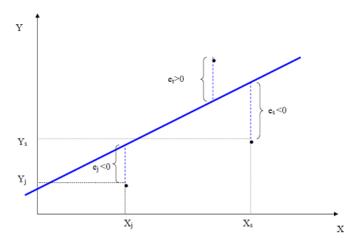
$$Y_i = \alpha + \beta X_i + \mu_i$$
 $i = 1, ...n$

Y el objetivo es estimar α y β a partir de (Y_i, X_i) i = 1, ...n.

Recordemos notación y definiciones:

- ullet $\hat{\alpha}$ y $\hat{\beta}$ son los estimadores de lpha y eta
- $\hat{Y}_i \equiv \hat{\alpha} + \hat{\beta} X_i$ es la versión estimada de Y_i
- $e_i \equiv Y_i \hat{Y}_i = Y_i (\hat{\alpha} + \hat{\beta}X_i)$ es el error de estimación (residuo)

Cada posible valor que asignemos a $\hat{\alpha}$ y $\hat{\beta}$ define una recta en el plano (Y,X)



Mínimos Cuadrados Ordinarios (MCO)

Criterio de MCO: elegir $\hat{\alpha}$ y $\hat{\beta}$ de manera de minimizar la **S**uma de los **R**esiduos al **C**uadrado (SRC).

Formalmente:

$$\begin{aligned} \textit{Min}_{\hat{\alpha},\hat{\beta}} \; \textit{SRC}(\hat{\alpha},\hat{\beta}) &= \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [Y_i - (\hat{\alpha} + \hat{\beta}X_i)]^2 \\ \textit{CPO} : \; \begin{cases} (1) & \frac{\partial \textit{SRC}}{\partial \hat{\alpha}} = 0 \\ (2) & \frac{\partial \textit{SRC}}{\partial \hat{\beta}} = 0 \end{cases} \end{aligned}$$

Solución:

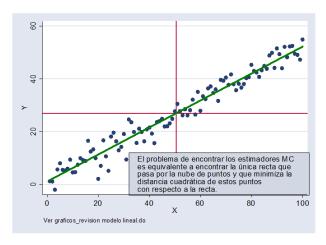
(3)
$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$$
 y (4) $\hat{\beta} = \frac{\sum\limits_{i=1}^{n} X_{i} Y_{i} - n\bar{Y}\bar{X}}{\sum\limits_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}}$ o (4') $\hat{\beta} = \frac{\sum\limits_{i=1}^{n} x_{i} y_{i}}{\sum\limits_{i=1}^{n} x_{i}^{2}}$

Propiedades algebraicas

- ③ $\hat{Y}(ar{X}) = ar{Y}$ (\Rightarrow la recta de regresión pasa por las medias muestrales)
- **1** $\hat{\beta} = r_{Y,X} s_Y / s_X$ (relación entre el coeficiente de regresión y el de correlación)
- $ar{\mathbf{y}} = ar{\hat{Y}}$ (la media de las estimaciones de Y coincide con $ar{Y}$)
- $\hat{\beta}$ es una función lineal de las Y_i , que puede escribirse como $\hat{\beta} = \sum \omega_i Y_i$, donde ω_i son números reales no aleatorios que dependen únicamente de las X_i .
- $r_{\hat{Y},e} = 0$ (la correlación entre las estimaciones de Y y los residuos es nula)

La regresión estimada por MCO

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$$



Bondad del ajuste

 Vimos que cuando se estima por MCO es válida la siguiente descomposición:

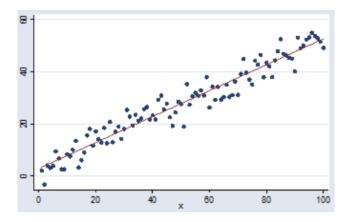
$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{STC} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{SEC} + \underbrace{\sum_{i=1}^{n} e_i^2}_{SRC}$$

STC: Suma Total de Cuadrados, SEC: Suma Explicada de Cuadrados, SRC: Suma de los Residuos al Cuadrado.

• Definimos la medida de bondad del ajuste R^2 como:

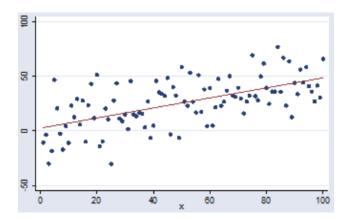
$$R^2 = \frac{SEC}{STC} = 1 - \frac{SRC}{STC}$$

$R^2 = 0.94$



94 % de la variabilidad muestral de Y está explicada por el modelo lineal en X

$R^2 = 0.35$



35% de la variabilidad muestral de Y está explicada por el modelo lineal en X

El modelo lineal clásico

Adoptaremos algunos supuestos llamados "supuestos clásicos"

- Linealidad: $Y_i = \alpha + \beta X_i + \mu_i, \forall i = 1,...n$
- X no aleatoria: las X_i son determinísticas o "fijas en muestreos repetidos".
- Esperanza nula de μ_i : $E[\mu_i] = 0, \forall i = 1,...,n$.
- Homocedasticidad de μ_i : $V[\mu_i] = cte. \equiv \sigma^2, \ \forall i = 1, ..., n$.
- No correlación serial de μ_i : $Cov[\mu_i, \mu_i] = 0, \forall i \neq j$.
- No multicolinealidad perfecta de las variables explicativas: las X_i no pueden ser todas iguales, X debe variar entre las observaciones.

Algunos de estos supuestos pueden no ser realistas. Levantaremos la mayoría a lo largo del curso.

Linealidad

• Nuestro modelo:

$$Y_i = \alpha + \beta X_i + \mu_i, i = 1, ...n$$

- Lo importante es la linealidad en los parámetros α y β . ¿Por qué?
- Vimos algunos modelos no lineales en las variables pero que son lineales en los parámetros:
 - log-log: $InY_i = \alpha + \beta InX_i + \mu_i$
 - semi-log: $InY_i = \alpha + \beta X_i + \mu_i$

X no aleatoria

- ¿Qué significa esto? Fijas en muestreos repetidos
- Poco real para una ciencia social
- Uso de experimentos en Economía
 - Se asigna un grupo de beneficiarios a la intervención o "tratamiento" y se mantiene y monitorea otro grupo llamado "control", que no recibe la intervención.
 - Esto permite estimar el efecto causal de una intervención en algún resultado de interés.
 - El Premio Nobel de Economía 2019 fue para Banerjee, Duflo y Kremer por sus contribuciones al estudio del desarrollo económico y del combate a la pobreza con estas herramientas. Ver esta entrada en el Blog del CEDLAS.

Esperanza nula

$$E[\mu_i] = 0$$
, $\forall i = 1, ..., n$

$$\bullet \Rightarrow E[Y_i] = \alpha + \beta X_i, i = 1, ..., n$$

• En promedio, la relación entre Y y X es lineal y exacta

Homocedasticidad

$$V[\mu_i] = V[\mu_j], \ \forall i \neq j$$

$$V[\mu_i] = cte. \equiv \sigma^2, \ \forall i = 1, ..., n$$

- Intuitivamente: para todas las observaciones, la relación entre
 Y y X está "igual de cerca" de una relación lineal
- Si la varianza no es constante decimos que hay heterocedasticidad
- Notar: si $E[\mu_i] = 0$ y $V[\mu_i] = \sigma^2 \Rightarrow E[\mu_i^2] = \sigma^2$

15 / 56

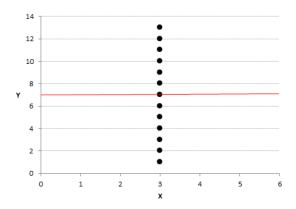
No correlación serial (o no autocorrelación)

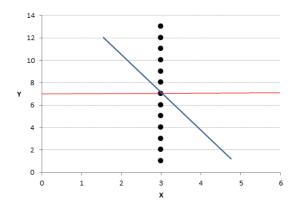
$$Cov[\mu_i, \mu_j] = 0, \ \forall i \neq j.$$

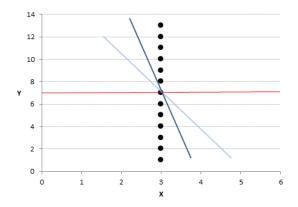
- Es una forma débil de independencia entre los términos aleatorios de distintas observaciones
- Notar que si $E[\mu_i]=0$ y $Cov[\mu_i,\mu_j]=0 \Rightarrow E[\mu_i\mu_j]=0$
- ¿Cuánto vale $Cov[\mu_i, \mu_j]$ para i = j?

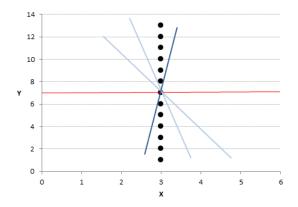
No multicolinealidad perfecta

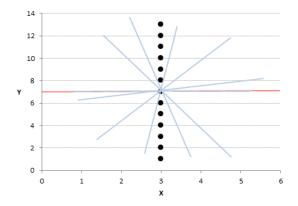
- En el modelo lineal con 2 variables, este supuesto requiere que la variable X no tenga el mismo valor para todas las observaciones.
- En otras palabras: X_i , i = 1, ...n no son todas iguales
- ¿Por qué?











Entonces, ¿por qué las X_i no pueden ser todas iguales?

- Una respuesta más formal: cuando hay multicolinealidad perfecta, las condiciones de primer orden del problema de MCO son linealmente dependientes ⇒ ∄ una única solución. Probarlo.
- ¿Intuición? Estimar β implica que le estamos preguntando a los datos cuánto cambia Y cuando cambia X. Cuando hay multicolinealidad perfecta, X no varía en la muestra, de manera que los datos no pueden responder esa pregunta.

Recapitulando... el modelo lineal clásico

$$Y_i = \alpha + \beta X_i + \mu_i, \ i = 1, ...n$$

- $E[\mu_i] = 0, i = 1, ..., n.$
- $V[\mu_i] = \sigma^2, i = 1, ..., n.$
- **3** $Cov[\mu_i, \mu_j] = 0, i \neq j.$
- \bullet Las X_i no son aleatorias y no son todas iguales

Notar: en el modelo lineal clásico (con 2 variables) los parámetros desconocidos son α , β y σ^2

Rol de los supuestos clásicos

- Ya sabemos que los estimadores mínimo cuadráticos $\hat{\alpha}$ y $\hat{\beta}$ son "buenos" en el sentido que minimizan la SRC
- En la derivación de los estimadores MCO de la clase pasada nunca recurrimos a los supuestos clásicos
- Entonces, ¿para qué hacemos los supuestos clásicos?
- Vamos a explorar si los estimadores MCO son buenos en algún otro sentido, ahora sí basándonos en los supuestos clásicos
- Nuevas propiedades: insesgadez, varianza mínima, etc.
- Nos concentramos en $\hat{\beta}$. Los resultados para $\hat{\alpha}$ serán cubiertos en los prácticos.

Primero, recordemos una de las propiedades algebraicas

• En la propiedad algebraica Nro. 6 vimos que $\hat{\beta}$ es una función lineal de las Y_i , es decir, que puede escribirse

$$\hat{\beta} = \sum \omega_i Y_i$$

donde ω_i son números reales no aleatorios, que dependen únicamente de las X_i y no son todos iguales a cero.

- En este sentido decimos que $\hat{\beta}$ es un estimador lineal.
- Repasemos la demostración (ver cap. 1.4 de notas de clase)

\hat{eta} es un estimador lineal, es decir, $\hat{eta} = \sum \omega_i Y_i$

Demostración: Comenzaremos escribiendo a $\hat{\beta}$ como sigue:

$$\hat{\beta} = \sum \left(\frac{x_i}{\sum x_i^2} \right) y_i$$

y definamos $w_i = x_i / \sum x_i^2$. Notar que:

$$\sum x_i = \sum (X_i - \bar{X}) = \sum X_i - n\bar{X} = 0$$

lo que implica $\sum w_i = 0$. Del resultado anterior:

$$\hat{\beta} = \sum w_i y_i$$

$$= \sum w_i (Y_i - \bar{Y})$$

$$= \sum w_i Y_i - \bar{Y} \sum w_i$$

$$= \sum w_i Y_i$$

• Intuitivamente poco interesante, analíticamente conveniente

Las propiedades estadísticas

- 1. Insesgadez: $E[\hat{eta}] = eta$, es decir, \hat{eta} es un estimador insesgado del parámetro eta
 - Ver demostración en cap. 1.6 de notas de clase.

• $\hat{\beta}$ es un estimador insesgado, esto es: $E(\hat{\beta}) = \beta$

Demostración:

$$\hat{\beta} = \sum w_i y_i$$

$$E(\hat{\beta}) = \sum w_i E(y_i) \quad \text{(los } w_i \text{ son no estocásticos)}$$

$$= \sum w_i x_i \beta$$

$$= \beta \sum w_i x_i$$

$$= \beta \sum x_i^2 / (\sum x_i^2)$$

$$= \beta$$

- ¿Qué pasa con la propiedad de insesgadez si levantamos el supuesto de homocedasticidad?
- ¿Cuál es el supuesto más importante para la insesgadez?
- Intuitivamente: ¿qué quiere decir que un estimador sea insesgado?

- ullet Supongamos que el verdadero modelo es $Y_i=2+5X_i+\mu_i$
 - $\alpha = 2$ y $\beta = 5$
 - recta de regresión verdadera: $E[Y_i] = 2 + 5X_i$
- Vamos a actuar como si no conociéramos los verdaderos valores de los parámetros:
 - tomamos una muestra de n observaciones
 - estimamos α y β por MCO
- Primera iteración. Con la realización de la muestra (datos) obtenemos una estimación: a₁ y b₁
 - Notar que a_1 y b_1 son números, no son aleatorios
 - Seguramente $a_1 \neq 2$ y $b_1 \neq 5$. ¿Por qué?

- Repetimos el ejercicio J veces: cada vez obtenemos una nueva muestra de n observaciones de la misma población y volvemos a estimar
 - En la segunda iteración obtenemos otra estimación de los parámetros: a₂ y b₂
 - En la **tercera iteración** obtenemos los valores a₃ y b₃
 - •
 - En la **J-ésima iteración** obtenemos *a y b y*

# iteración	realización de \hat{lpha}	realización de \hat{eta}
1	a_1	b_1
2	a ₂	b_2
3	a ₃	<i>b</i> ₃
	:	:
J	ај	Ьл
∑()/J	ā	Б

- Si J es lo suficientemente grande el promedio de los valores estimados coincide con el valor esperado del estimador (LGN).
- Y como los estimadores son insesgados bajo los supuestos clásicos, el valor esperado del estimador coincide con el verdadero valor del parámetro
 - $\bar{a} = E[\hat{\alpha}] = \alpha = 2$
 - $\bar{b} = E[\hat{\beta}] = \beta = 5$

- Interpretación: si usamos un estimador insesgado y pudiésemos repetir el experimento muchas veces obtendríamos el verdadero valor del parámetro.
- Si usamos un estimador insesgado esperamos obtener el verdadero valor del parámetro

Las propiedades estadísticas

2.
$$V[\hat{\beta}] = \sigma^2 / \sum x_i^2$$

- Ver demostración en cap. 1.6 de las notas de clase
- ¿Qué supuestos usamos para la prueba?

¿Qué mide $V[\hat{eta}]$?

- \bullet Si $\hat{\beta}$ es insesgado, $V[\hat{\beta}]$ mide la dispersión del estimador alrededor del verdadero β
- ullet Cuanto menor sea $V[\hat{eta}]$, más eficiente es el estimador \hat{eta}
- ¿De qué depende la magnitud de $V[\hat{\beta}]$?

$$V[\hat{\beta}] = \frac{\sigma^2}{\sum x_i^2} = \frac{\sigma^2}{nV[X]}$$

- depende de la dispersión del término aleatorio (σ^2)
- de la cantidad de observaciones (n)
- de la variabilidad de X (es decir, de V(X))
 - que X tenga poca variabilidad muestral tiene el mismo efecto que tener pocas observaciones

Las propiedades estadísticas

- 3. Teorema de Gauss-Markov (TGM): si los supuestos clásicos se cumplen, $\hat{\beta}$ tiene la menor varianza entre todos los estimadores lineales e insesgados de β .
 - En el modelo lineal clásico, los estimadores MCO son los Mejores
 Estimadores Lineales e Insesgados (MELI)
 - "Mejores" en el sentido de "más eficientes" dentro del grupo de estimadores lineales e insesgados
 - Entonces, ¿los estimadores MCO son buenos?
 - Los supuestos clásicos son condiciones necesarias y suficientes del TGM:
 - suficientes: basta que se cumplan para que saber que los estimadores MCO son MELI
 - necesarios: con que solo uno de los supuestos no se cumpla, los estimadores MCO ya no serán los MELI.

Inferencia en el modelo lineal clásico con 2 variables

Consideremos el modelo
$$Y_i = \alpha + \beta X_i + \mu_i$$
, $i = 1,...n$

- ullet Sabemos cómo producir estimaciones puntuales de lpha y eta
- ¿Qué podemos hacer si quisiéramos evaluar la veracidad de una hipótesis como $\beta = 0$? (test de hipótesis)
- Necesitamos asociar alguna medida de confianza a la estimación puntual

Test de hipótesis

- Hipótesis: una conjetura acerca de un parámetro desconocido
- Por ejemplo: H_0 : $\beta = 0$
- Puede ser cierta o falsa
- ullet Si pudiéramos observar eta no hay problema
- ¿Y si no conocemos β ? No sabemos realmente
- Pero esperamos poder conocer algo acerca de si H_0 es cierta o falsa

Supongamos que estamos interesados en distinguir entre H_0 : $\beta=0$ y H_A : $\beta\neq 0$, pero sin observar β .

- ullet Podemos usar \hat{eta}
- \hat{eta} es una variable aleatoria. ¿Por qué?
- Como las realizaciones de $\hat{\beta}$ pueden tomar cualquier valor tanto bajo H_0 como bajo H_A , no podemos resolver nuestro problema observando los valores que toma $\hat{\beta}$ para una muestra particular.

- ullet Supongamos que \hat{eta} es un "buen" estimador
- Si H_0 : $\beta=0$ es cierta, entonces, aunque $\hat{\beta}$ pueda tomar cualquier valor, esperamos que tome valores "cercanos" a cero. ¿Por qué?
- Con esta lógica, podemos sospechar que H_0 es falsa si $\hat{\beta}$ toma valores "lejanos" de cero: rechazamos H_0 .
- Problema: ¿cómo definimos qué valores están "cerca" y qué valores estan "lejos" del cero?

- A fines de definir qué valores de $\hat{\beta}$ están "cerca" y qué valores están "lejos" del cero en el caso de que H_0 fuera cierta, necesitamos conocer la distribución de $\hat{\beta}$ (distribución de $\hat{\beta}$ bajo H_0)
- A partir de las propiedades de $\hat{\beta}$ bajo los supuestos clásicos, sabemos que si H_0 : $\beta=0$ entonces $E[\hat{\beta}]=0$. ¿Por qué? También sabemos su varianza.
- Pero no tenemos información suficiente para conocer toda la distribución de $\hat{\beta}$ bajo H_0
- ¿Dónde conseguimos esa información?

Nuevo supuesto: normalidad del término aleatorio

$$\mu_i \sim N(0, \sigma^2)$$

- Con este nuevo supuesto, tanto Y_i , i=1,...,n, como $\hat{\beta}$ (y también $\hat{\alpha}$) son variables aleatorias con **distribución normal**. ¿Por qué?
 - Recordar que cualquier función lineal de una variable normal es también normal
 - Y que el modelo de Y_i viene dado por: $Y_i = \alpha + \beta X_i + \mu_i$
 - Y que $\hat{\beta}$ se puede escribir como $\hat{\beta} = \sum \omega_i Y_i$

 Entonces, con los supuestos clásicos más el supuesto de normalidad tenemos:

$$\hat{\beta} \sim N(\beta, \sigma^2 / \sum x_i^2)$$

• De manera que cuando es cierta H_0 : $\beta = 0$, se cumple:

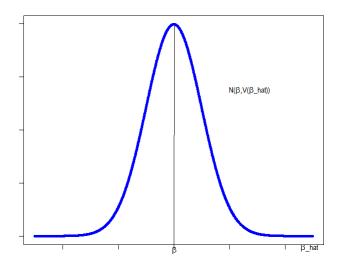
$$\hat{\beta} \sim N(0, \sigma^2 / \sum x_i^2)$$

• También se cumple:

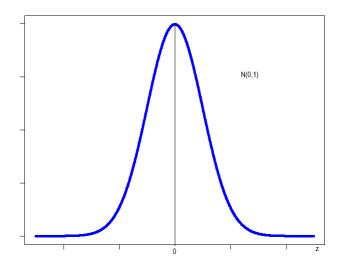
$$z \equiv rac{eta - 0}{\sqrt{\sigma^2 / \sum x_i^2}} \sim N(0, 1)$$

ullet Cuando \hat{eta} es "chico", z es "chico"

Distribución de $\hat{eta}^{|}$



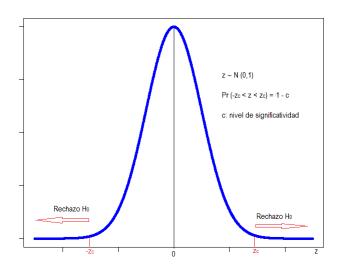
Distribución de z (estandarización de \hat{eta})



- Regla de decisión para el test de hipótesis:
 aceptamos H₀ si la realización de β̂ está cerca del valor que postula esa hipótesis nula.
- Para definir "cercano" elegimos una constante $c \in (0,1)$ tal que:

$$\Pr\left[-z_c \le z \le z_c\right] = 1 - c$$

- Notar: la elección de c determina los valores $-z_c$ y z_c .
- Si el valor de z (estandarización de $\hat{\beta}$) está entre los límites $-z_c$ y z_c , concluimos que $\hat{\beta}$ está "cerca" de lo que postula H_0 y aceptamos esa hipótesis.



• La región de aceptación de H_0 en términos de z está dada por:

$$\Pr\left[-z_c \le z \le z_c\right] = 1 - c$$

• Reemplazando z por su definición:

$$\Pr\left[-z_c\left(\sqrt{\sigma^2/\sum x_i^2}\right) \le \hat{\beta} \le z_c\left(\sqrt{\sigma^2/\sum x_i^2}\right)\right] = 1 - c$$

• Entonces la región de aceptación de H_0 viene dada por los valores de $\hat{\beta}$ en el intervalo:

$$0 \pm z_c \left(\sqrt{\sigma^2 / \sum x_i^2} \right)$$

- Aceptamos H_0 si $\hat{\beta}$ "cae" en ese intervalo. En caso contrario, rechazamos H_0
- Notar: elegimos c de antemano.
- c es la probabilidad de rechazar una H₀ cuando es cierta (error tipo I) y se conoce como el nivel de significatividad del test.
- Al elegir de antemano el nivel de significatividad del test, estamos resignándonos a cometer el error tipo l un $c \times 100\%$ de las veces. ¿Por qué aceptamos cometer errores tipo l?
- Dado c, z_c puede obtenerse de una tabla de percentiles de la distribución normal estándar
- Luego las zonas de aceptación y rechazo se computan usando $0\pm z_c\left(\sqrt{\sigma^2/\sum x_i^2}\right)$

Problema: σ^2 no se observa!

• Estimador insesgado de σ^2 :

$$S^2 = \frac{\sum e_i^2}{n-2}$$

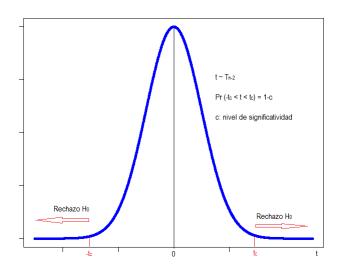
• Resultado: bajo todos los supuestos, si H_0 : $\beta=0$ es cierta, entonces

$$t \equiv \frac{\hat{\beta}}{\sqrt{S^2/\sum x_i^2}} \sim T_{n-2}$$

donde T_{n-2} es la distribición T de Student con n-2 grados de libertad

$$t \equiv \frac{\hat{\beta}}{\sqrt{S^2/\sum x_i^2}} \sim T_{n-2}$$

- ullet t es z pero reemplazando σ^2 por S^2
- Ahora todo puede ser computado con los datos disponibles



- Hasta ahora vimos el caso particular: $H_0: \beta = 0$ vs. $H_{\Delta}: \beta \neq 0$
- Caso general: $H_0: \beta = \beta_0$ vs. $H_A: \beta \neq \beta_0$
- Ejemplo: supongamos que en el modelo $Y_i = \alpha + \beta X_i + \mu_i$, donde Y es el consumo agregado y X es el ingreso disponible, queremos evaluar si la propensión marginal a consumir es igual a 1. Para eso postulamos $H_0: \beta = 1$

• Entonces, bajo todos los supuestos y cuando es cierta $H_0: \beta = \beta_0$, se cumple:

$$\hat{\beta} \sim N(\beta_0, \sigma^2 / \sum x_i^2)$$

Que estandarizando resulta:

$$z \equiv \frac{\hat{\beta} - \beta_0}{\sqrt{\sigma^2 / \sum x_i^2}} \sim N(0, 1)$$

• Y si reemplazamos por el estimador de σ^2 tenemos:

$$t \equiv \frac{\hat{\beta} - \beta_0}{\sqrt{S^2 / \sum x_i^2}} \sim T_{n-2}$$

$$t \equiv \frac{\hat{\beta} - \beta_0}{\sqrt{S^2 / \sum x_i^2}} \sim T_{n-2}$$

- ullet En la práctica, reemplazamos eta_0 por cualquier valor que nos interese
- En general, el estadístico t es la versión estimada de H_0 , dividida por la raíz cuadrada de la varianza estimada.

55 / 56

Bibliografía para esta clase

- Notas de Clase, Capítulo 1.
- Wooldridge, Capítulo 2.